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. Overview -

e What we know:

* Volcanically derived Vo‘latil'e's
» Timing of volatile release. . |
e Current observations of lunar polar Volatl .
* How volatiles migrated on the Moon.
* Thickness of resulting deposits. '.

e Implications for the current dlS_,th‘, r volatiles.



 Apollo mare basalt samples: CO, H, OH, H,O, and S volatiles.f

* e.g., Housley, 1978; Robinson and Taylor, 2014; McCubbin et al., 2010; Shearer et al., 2006

* Volcanic activity peaked 3.8 Ga and 3.5 Ga.
* 60% of all volcanically derived volatiles were released 3.5 Ga.

* 20% released 3.8 Ga; remaining 20% released during all other
mare eruptions.

» Peak volatile release may have resulted in the formation of a
transient lunar atmosphere.

« Some volatiles lost to space, others settled to the surface as
atmosphere dissipated.
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Recent Polar H-Bearing Material Detections from Orbit
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Moon Mineralogy Mapper LEND detection of water
surface detection of OH/H,0 equivalent H (1 m depth) via OH/H,0 variability by
at lunar poles (blue/purple); neutron suppression at lunar latitude and day from M3;

Pieters et al., 2009 poles; Sanin et al., 2017 Li and Milliken, 2017



Where Lunar Volatiles are Now: North Pole

e Water at surface: Centered about North Pole.

e Modern accumulations?

e Water at 1 m depth: Offset to 9o°E - 180°E.

e Ancient accumulations? (e.g, Siegler et al., 2016)

Current M3 H,0 Ice LEND Water Equivalent H Current Ice Stability Zones Past Ice Stability Zones
Detection (surface) (1 m depth) (2.5 m depth) (2.5 m depth)
Li et al., 2018 Sanin et al., 2017 Siegler et al., 2016 Siegler et al., 2016
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Where Lunar Volatiles are Now: South Pole

e Water at surface: Centered about South Pole.

e Modern accumulations?

» Water at 1 m depth: Offset to 270°E - 0°E. (?)

e Ancient accumulations? (e.g, Siegler et al., 2016)

Current M3 H,0 Ice LEND Water Equivalent H Current Ice Stability Zones Past Ice Stability Zones
Detection (surface) (1 m depth) (2.5 m depth) (2.5 m depth)

Li et al., 2018 Sanin et al., 2017 Siegler et al., 2016 Siegler et al., 2016



e Questions:

e Where did the Volatlles settle on the Moon7 g ‘

* How thick wouldjtg f(?—SEﬂtlng deposms have be B

* s

 Results have 1rnp11cat10ns for the curr
distribution of lunar Volatlles *a



M1grat10n of Lunar Volcamcally Derwed Volatlles

 In the absence of a lunar atmosphere:
 Volatiles ‘hop’ based on energy gradient, traveling towards lower energy (to the poles).

» Assume erupted volatiles migrated to nearest pole - dependent on eruption location.
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Mlgratlon of Lunar Volcamcally Denved Volatiles
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* In the presence of a lunar atmosphere:
 Volatiles entrained in globally distributed atmosphere.

» Equatorial and mid-latitude volatiles likely to migrate to the
pOleS (e.g., Soto et al., 2018)

» Assume erupted volatiles deposit evenly at each pole as the
atmosphere dissipates — 50% erupted volatiles to each pole.

 Volatiles trapped in areas of stability.




— CO max
S max

=== H, max
H,O max

e Assumptions:
 Volatiles released 3.5 Ga and 3.8 Ga (~80%) split between poles.
 All other volatiles migrated to nearest pole (mostly north pole).
e Assume no H,O loss (2.4 x 10" kg) - max deposit thickness. LEEOE LR R
* H,O/OH only; assume H is lost to space

« Know areas of expected volatile preservation (NP/SP):

Mass (x10'7g)

SP Currently

SP PSRs ‘,‘
Mazarico et 1 S’Fable (2.5m)
Region NP Area (km2) | SP Area (km2) | Reference al,, 2011 S'Gg'zeorl‘zt al,
Current PSRs Mazarico et al., 2011
Currently Stable 2.5 m Siegler et al., 2016
Past Stable 2.5 m Siegler et al., 2016
Observed Surface Water Lietal., 2018 SP Current Y Sppast
surface Ice ¥ ctable (2.5 m)
Lietal, 2018 Siegler et al.,

2016
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e Assumptions:
 Volatiles released 3.5 Ga and 3.8 Ga (~80%) split between poles.

 All other volatiles migrated to nearest pole (mostly north pole).
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e Assume no H,O loss (2.4 x 10" kg) - max deposit thickness. —
* H,O/OH only; assume H is lost to space

« Know areas of expected volatile preservation (NP/SP):

SP Currently

SP PSRs ‘,‘
Mazarico et : S’Fable (2.5m)
Region NP Area (km2) | SP Area(km2) | Reference al,, 2011 S'Gg'zeorl‘zt al,
Current PSRs Mazarico et al., 2011
Currently Stable 2.5 m Siegler et al., 2016
Past Stable 2.5 m Siegler et al., 2016
SP Current H SP Past

¥ Stable (2.5 m)
Siegler et al.,
2016

Distribution
Sanin et al.,, 2017 g



— CO max
S max

e South Pole Results: T
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e North Pole Results: Tl
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Implications for Distribution of Polar Lunar Volatiles

* Ice ~1.5 m thick deposited in stable regions at each lunar pole.
» Subsequently covered by ejecta, vaporized, and gardened by subsequent impacts.

e May have 6-10 m ice-bearing regolith above thinner subsurface ice horizon.

(Fa and Jin, 2010; Kobayashi et al., 2010)
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Releasing volatiles via sputtering and impact vaporization
processes; Farrell et al., 2015.
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Implications for Distribution of Polar Lunar Volatiles

e Would ~1.5 m thick layer of ice survive 3.5 Ga?

» Based on “turns” of regolith based on impact gardening rates, no. To survive 3.5 Ga, 5-10 m thick layer required.

(Costello et al., 2019)
* Beginning to look at this with another model based on the generation of small, simple craters, to confirm.

(Hirabayashi et al., 2018)
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Implications for a Mission Prospecting for Lunar Volatiles

» The source of volatiles can affect the composition of these volatile deposits.

 H, O isotopes
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Implications for a Mission Prospecting for Lunar Volatiles

» The source of volatiles can affect the composition of these volatile deposits.

North Pole _1 Absorption strength at 850 nm > 0.1 . South Pole

 H, O isotopes AR O 1 o0 v

o Alteration minerals like hematite! (Lietal,, this meeting)
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